Modelling and Simulation of Offshore Windfarms - Mapping and Analysis of relevant O&M Processes

Philip Joschko, Andi Widok, Bernd Page, Susanne Appel, Saskia Greiner, Henning Albers
Topics of this talk
1. Introduction: Offshore Windfarms
2. SystOp-Project
3. Modelling O+M Processes
4. Simulation of O+M Processes
5. Conclusion and Outlook
Planned Wind Farms in Northern Sea

0.28GW now
10GW until 2020
25GW until 2030
Challenges
(just examples)

- Weather conditions
- Coordination of involved players
- High planning effort
- High risk level and safety regulations
SystOp Offshore Wind

- Funded by BMU
- May 2011 until April 2014

- University of Applied Sciences Bremen
- BTC AG
- IZP Dresden
- University of Hamburg

- www.systop-wind.de
Object of investigation

- **Operational phase**
- **Processes** of operation and maintenance (O+M)
- **Focus:** Interactions/Interfaces between market players.

- Creating a basis for:
 - Communication about O+M
 - Optimization of O+M
 - Risk analysis of O+M

- Not our scope: Physical or technical models of wind turbines. Planning, building, deconstruction phase.
Expected results

- Documentation of maintenance processes. Guidelines for evaluation and optimization.
- Risk analysis. Identification of critical activities and interfaces.
- Standardised reference processes: German Wind Power Plant Model.
Industrial Partners

- Bugsier Reederei- und Bergungsgesellschaft mbH & Co. KG
- DEWI-OCC Offshore and Certification Centre GmbH
- DOTI GmbH & Co KG
- EWE Energie AG
- EWE Offshore Service & Solution GmbH
- Frisia-Offshore GmbH
- Hochtief Solutions AG
- htm Helicopter Travel Munich GmbH
- Nehlsen GmbH
- Nordwest Assekuranzmakler GmbH & Co. KG
- PHH Personaldienstleistung GmbH
- REETEC GmbH Regenerative Energie- und Elektrotechnik
- RKM Personaldienstleistungen GmbH
- Signalis Germany
- Windparkservice GmbH
- WindMW
- WKU AG
- wpd windmanager GmbH & Co. KG
Business Process Notations

- Flow chart representation of processes

- **Examples**
 - Event-Driven Process Chains
 - Unified Modeling Language
 - Business Process Model and Notation 2.0

- ... differ in ...
 - degree of formalization.
 - number of elements.
Why we chose BPMN 2.0

- **Message Flows**: Mapping the interaction between involved players

- **Attached Events**: Mapping termination conditions
List of modelled processes

- Servicing / Maintenance
- Recognition and Measurement
- Planning
- Processing
- Post-Processing
- Operation

Application planning
- Human resources scheduling
Transport scheduling
- Boarding and pre-departure
- Accomplishment
- Return and key

Communication base!
As a result of this project...
...but also for our sub-projects:
1. Risk Analysis (IZP)
2. Simulation (UHH)
BPMN software of our choice:

- Standardized BPMN 2.0 export
- Solutions, projects and online repository
- Validation and simulation features
- Very ergonomic and fast modeling
- Free professional licenses for academical use

www.iyopro.de
Discrete Event Simulation

Simulation
- Investigating the dynamic runtime behaviour
- State variation is recorded and statistically evaluated
- No experimentation with real system

Stochastics
- Not all influences are modeled deterministically
- Stochastic distributions indicate random fluctuations
Simulating O+M Processes

- Detecting modeling errors
- Key performance indicators
- Comparison of alternative system configurations
- Improve O+M processes
Stochastic Simulation Properties

1. Duration of activities
 - Measured data
 - Estimated data

2. Interarrival time of events
Stochastic Simulation Properties

1. Duration of activities
 - Measured data
 - Estimated data

2. Interarrival time of events
Domain Specific Simulation Tool: DesmoWindparkStudio
<table>
<thead>
<tr>
<th>Wind farm layer</th>
<th>Wind farm editor</th>
<th>Wind turbine components</th>
<th>Stochastic weather generator</th>
<th>Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPMN simulation layer</td>
<td>Solution explorer</td>
<td>BPMN extension</td>
<td>BPMN graph editor</td>
<td>BPMN import</td>
</tr>
<tr>
<td>Experiment scheduling</td>
<td>Cost editor</td>
<td>Resource editor</td>
<td>Stochastic distribution editor</td>
<td></td>
</tr>
<tr>
<td>Technical layer</td>
<td>Simulation engine DESMO-J</td>
<td>Visual editor</td>
<td>Property editor</td>
<td></td>
</tr>
<tr>
<td>Expression parser</td>
<td>Workflow engine / Assistant system</td>
<td>Selection service</td>
<td>Help system</td>
<td></td>
</tr>
<tr>
<td>Framework</td>
<td>Empinia (Plugin Framework, runtime environment, user interface)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESMO-Windpark-Studio

Was wollen Sie tun?

- Eine neue Experiment-Datenbank anlegen
- Neue Projektmappe anlegen
- Mit zuletzt verwendetem Projektmappe fortfahren
- Vorhandene Projektmappe bearbeiten
- Wetterdaten
- Neue Anlagen anlegen
- Neue Komponenten für Windkraftanlagen anlegen
- Neuen Windpark anlegen
Empinia (Plugin Framework, runtime environment, user interface)

Selection service

Simulation engine DESMO-J

Workflow engine / Assistant system

Visual editor

Property editor

Expression parser

Workflow engine / Assistant system

Selection service

Help system

Wind farm layer
- Wind farm editor
- Solution explorer
- Experiment scheduling
- Simulation engine DESMO-J

BPMN simulation layer
- Wind turbine components
- BPMN extension
- Cost editor
- BPMN graph editor
- Resource editor
- Stochastic weather generator
- BPMN import
- Stochastic distribution editor

Technical layer
- Experiment scheduling
- BPMN extension
- Cost editor
- Resource editor

Framework
- Expression parser
- Workflow engine / Assistant system
- Selection service
- Help system

Empinia
(Plugin Framework, runtime environment, user interface)
• Data of the wind farm
 • Geographical information
 • Number of turbines

• Data of the wind turbines
 • Type
 • Power generation
 • Components

• Data of components
 • Failure probability

Alpha Ventus →
- Input: wind speed (m/s)
- Output: generated Energy (MW)

\[
P = \begin{cases}
0, & \text{if } 0 \leq V < V_{ci} \\
P_r(a + b \cdot V + c \cdot V^2), & \text{if } V_{ci} \leq V < V_r \\
P_r, & \text{if } V_r \leq V < V_{co} \\
0, & \text{if } V_{co} \leq V
\end{cases}
\]

Byon, Perez, Ding 2011: „Simulation of wind farm operations and maintenance using discrete event system specification“
• Definition of components

• Weibull distributions considering the failure

• Costs and other basic information
Failure of components...
- ...result in failure of wind turbines.
- ...different states of whole farm (reduction of energy generation)
- ...start different maintenance processes
Empinia (Plugin Framework, runtime environment, user interface)

Selection service

Simulation engine DESMO-J

Workflow engine / Assistant system

Visual editor

Property editor

Wind farm layer

Wind farm editor

Wind turbine components

Stochastic weather generator

Reporting

Solution explorer

BPMN extension

BPMN graph editor

BPMN import

Experiment scheduling

Cost editor

Resource editor

Stochastic distribution editor

Wind farm simulation layer

BPMN explorer

BPMN extension

BPMN graph editor

BPMN import

Experiment scheduling

Cost editor

Resource editor

Stochastic distribution editor

Technical layer

Simulation engine DESMO-J

Visual editor

Property editor

Expression parser

Workflow engine / Assistant system

Selection service

Help system

Framework

Empinia
(Plugin Framework, runtime environment, user interface)
Historical Data (~10 years)
• FINO 1 Weather Station
• Located near Alpha Ventus

Saisonal fluctuations
• Wind speed
• Wave height
• Temperature

Important for
• Power generation model
• Access probability
Top: FINO 1 weather station 1 dataset/“dot“ every 10 minutes

Bottom: generated data 1 dataset/“dot“ per hour

Parameter:
• Daily mean Wind speed
• Wind speed hourly standard deviation

Java-based Simulation Library
Ported to C#/.NET
Event-oriented and process-oriented modelling
Easily extendable for domain-specific applications
Apache License (Open-Source)
Download Java sources and binaries: www.desmo-j.de

Simulation infrastructure:
Simulation Clock, Scheduler, Experiment Class, Queues, Statistics and Reports,
...

Stochastical Distributions
Constands, Bernoulli, Beta, Gamma, Normal, Erlang, Binomial, Geo, Hypergeo, Poission, Uniform, Empirical...
Summary SystOp

- Identified stakeholders and relationships
- Modeled O+M processes in BPMN 2.0
- Domain specific analysis tool for calculating KPIs
- Optimized reference process model + Documentation

Communication base for stakeholders, scientists and authorities
Conclusion of interim results

- BPMN 2.0: well-suited to represent processes
- Simulation: well-suited to cover errors and calculate KPIs for those processes
- Need a lot of data, time and patience
 - You‘ll never get all data you need!
- Interdisciplinary team eases the work
Outlook Simulation Tool: Applicable to other domains!

- Concept of extending BPMN 2.0
 - Domain-specific elements
 - Eases understanding

- Unfortunately not scope of specification, not featured by established tools

- Coupling process models to heterogenous, domain-specific models
 - Simulating processes in their environment
SystOp at EnvirolInfo 2013

- Henning Albers, Saskia Greiner, Susanne Appel:
 - Poster: „The process chain offshore wind farm“

- Student Workshop (german language):
 - Tilmann Stehle:
 - „Experimentplanung mit DesmoWindparkStudio“
 - Thursday, 3:20pm

- Cornelia Mengel:
 - „Simulation der Einsatzplanung von Offshore Winparks“
 - Thursday, 3:40pm
Thank you very much!

Philip Joschko, Andi Widok, Bernd Page, Susanne Appel, Saskia Greiner, Henning Albers